Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

Han dynasty vs Roman empire: Science and technology

I found a gem of a writeup about these two ancient empires by Hoang Nghiem (严黄)

The Roman Empire at its heights in 117 AD, with a land area of 5 million km^2:

Honestly speaking though, how is it possible to truly even answer this question? What defines “more” technologically advanced anyway? The number of inventions? Probably not. Then there is the matter of potential: could the runner up society have defeated the current technological hegemon, should it have been convenient for them to? Perhaps. “Necessity is the mother of invention” after all according to the Ancient Greek Philosopher, Plato.

Then there is the matter of accuracy with regards to bias. Is there a tendency to exaggerate a particular number in order to fulfil a hidden agenda? After all, when comparing two great fathers of civilization together, things inevitably tend to get a little… heated let’s just say, at least from personal experience. It is a matter of cultural, civilizational and perhaps even national pride after all – completely understandable.

Territories of the Han Dynasty at its heights in 100 AD, with a land area of 6.5 million km^2:

Which is not to say that this author will be biased, even despite the fact that he is of a Han Chinese ancestral composition, for he considers personal prejudices (of which he has many) to be a blatant insult against “good” history writing. So rest assured, he will certainly try (the keyword here being “try”) to keep it impartial throughout the course of the entire analysis.


Now, the way this works is simple, the author will attempt to compare both Chinese and Roman endeavors together, throughout a variety of different technological areas. He will however, leave it primarily up to you; his audience to objectively decide based on the presented facts below, as to who was truly more advanced between the two civilizations in a particular area.

But of course to keep things fair, as he does not completely trust in his audience to do so, will also offer up his own verdicts on who was probably technologically “superior” with regards to the aforementioned matters, at the end of each comparison. Speaking of which, here are the areas of technology which shall be compared throughout the following analysis (some of which do overlap it should be noted):

  • Metallurgy
  • Agriculture
  • Hydraulics and Mechanics
  • Medicine
  • Astronomy
  • Naval Technology
  • Aeronautics
  • Materials Engineering
  • Mathematics
  • Civil and Structural Engineering
  • Military Technology

With all that said and out of the way however, it’s time to finally begin the comparison.

Warning: Long answer dead ahead of 18,900 words.


Metallurgy

Roman Metallurgy was known to be unbelievably advanced for its time. At the peak of its production around 150 AD, Roman Silver production had already been estimated to have been 5–10 times larger than both “Dark Ages” Europe, and the mighty Abbasid Caliphate (750–1258 AD)’s Silver production combined at the dawn of the 9th Century AD.

Roman productions also of both Copper and Bronze meanwhile, remained unsurpassed anywhere in the world until the Industrial Revolution of the mid 19th Century. Lead on the other hand, was produced on a scale so large, that some Historians have even gone so far as to claim that its production led to, “the oldest large-scale hemispheric pollution ever reported” in the History of Man.

Case in point, based on the projections of many different sources alike, here is a table below comparing the Han Chinese, and Roman Metal Productions in metric tonnes; (SourceComparison between Roman and Han Empires):

In saying that on the other hand, Roman production of coins was far surpassed by its Han counterparts.

By the mid 3nd Century AD, the Romans had managed to produce roughly 98 million coins annually by one academic estimate. This greatly contrasted with the Han Chinese, who at its peak from 118 BC to 5 AD, managed to produce on average a magnitude of 220 million coins per year, or roughly 2.24 times more than the Romans did.

The difference however between the two civilizations; was the composition of which their currencies were made of. Han coins for one, were either made out of Copper, or Bronze Alloy (Copper mixed with Tin). Roman coins on the other hand often varied between not just Copper, but Bronze, Silver and Gold alike. This suggests that Han production of Copper, whilst presently unknown at an official level, would most likely have outclassed their Roman counterparts by a significant margin.

The different types of coins which existed under the Roman Empire:

A Chinese “Wuzhu” coin dating back to the Era of the “Martial Emperor”, Han Wudi (reigned 141–87 BC):

The Roman Empire at this point in time, had also just independently innovated the concept of “Cast Iron Tools”. Archaeological evidence however maintains, that this was done quite late in their history during the Imperial Era; sometime within the 4th-5th Centuries AD.

The Han meanwhile did not invent cast iron tools themselves, but had had it by that point in time for roughly 500 years already; an entire 1,000 years before the Romans did, and therefore presumably outclassed the latter in cast iron based objects, with regards to not only quantity, but even quality as well.

This is an understatement really, since Cast Iron production was actually perfected during the 426 year long reign of the Han Dynasty, through the use of specialist furnaces which converted Iron ore into “Pig Iron”, and from there into “Cast Iron”, greatly improving civil and military tools alike.

Evidence meanwhile, for large scale mining operations and processing establishments, have to this day been discovered en masse throughout the former territories of Roman Iberia.

Roman ingots of lead from the mines of Cartagena, Spain:

It was a similar case also for the former domains of Britannia in addition, which was likewise overflowing with natural wealth at the time. Gold for example has been discovered to have been mined at Dolaucothi in Wales, Copper and Tin in Cornwall, and Lead in Pennines and the Mandip Hills. Britannia’s Iron Production alone in fact, was 2,250 tonnes annually, or already 50% of Han China’s total Iron production at a national level.

Italian steel meanwhile, limited as it was due to the fact that Roman furnaces had a limit of roughly 1300°C, roughly 240°C short of the ability to melt “pure” iron, still to this day is widely considered by Historians all over the world alike, to have remained unrivalled at its peak. Indeed, even in the face of the aforementioned limitations, they were still able to forge “Wrought Iron”, from which a form of steel known as “Wootz” was derived.

Verdict: The Roman Empire would appear to have been more advanced with regards to Metallurgy. The quantity of Roman produced metals, unrivalled until the advent of the Industrial Revolution nearly 1,850 years later gives them a decisive edge over the Han, despite the fact that the Chinese had some notable advantages also. Rome: 1; Han: 0.


Agriculture

The dominance of Roman over Han Agriculture however, is not as clear as was the case previously for Metallurgy.

Roman Agriculture which of course peaked during the course of the Nerva-Antonine Dynasty (96–180 AD), greatly varied by region. But based on sources which have been ascertained from Wikipedia via Roman agriculture, state that for every average sowing of 135 kg of seed per hectare, the following numbers are returned as alphabetically ordered by province (chart is self-created so no source available):

Self-evidently, the annual output of wheat varied by region, which when averaged, returns a number amounting to 848 kg/ha, for the entire Roman Empire, which is surprisingly comparable to levels finally attained by the countries of a “Least Developed” status in 1963, which today still accounts for roughly 25% of all nations in the world as of 2018.

From Egypt alone in fact, the most agriculturally productive region in the Roman Empire, 20 million modii (or approximately 174.6 million kg) of wheat were produced, allowing for at least 2/3 of the city of Rome to have been fed alone, or 670,000 individuals roughly. If this number is constant for the population as a whole, then based on the derived calculations resultant, would amount to an annual national production figure of 15.714 billion kg of grain per year, or 225 kg of wheat per person.

The Roman Empire was also quite fortunate to have been able to partly “mechanize” their Agricultural productions most notably in addition. To this extent, the Romans used a form of automatic harvester, primarily Oxen powered, allowing them to have harvested ears of wheat as much as required, whilst also simultaneously rejecting its body at a parallel level.

The aforementioned Gallo-Roman Harvesting Machine, an original Roman invention:

The Romans also used extensively utilized mills (found all over Modern France and Italy), to grind wheat into flour. The most impressive remains of these Roman innovations can be seen today in Barbegal, France, in which 16 overshot water wheels arranged into 2 equal columns were purposefully positioned in order to be fed by the main Roman aqueduct. The water would pour down into a certain mill, which then also acted as the supply for the next one down in the series also.

Operating for approximately 200 years on end, it was estimated to have aided in the production of 4.5 kg of flour per day; more than enough to supply bread for the nearby town of Arelate, which had a population of 12,500 individuals.

Rome’s Agricultural production however falls slightly short of their rivals’ supposed numbers, which has previously once been claimed before to have fallen somewhere in the vicinity of 16 billion kg of wheat per year, or merely 1.8% more than Rome. Said to have led both the world in annual grain yields at a absolute and per capita level, this would have amounted to approximately 280 kg of wheat per person, or roughly 11% more than their Roman counterparts.

Abetted by the perfection also of Cast Iron tools from before, the Han saw major advances in Agricultural technology with regards to the Chinese invention of the “Multi-Tube Seed Drill”, pictured down below as follows:

It was a revolutionary tool which made the sowing of seeds quicker, more efficient, and less time consuming. And it was directly as a result of this innovation, that production yields were maximized thus acting to sustain population growth henceforth.

The Han Dynasty however, did not only invent the Multi Tube Seed Drill to help them in the areas concerning Agricultural production, but likewise also innovated the concept of the “Replacement/Alternating Field” or “Daitianfa” (代田法) Method of Farming, in which fields were divided into multiple long narrow trenches, making it easy for the various seeds to be placed into those said trenches.

In addition, the soil that fell from the mountain tops on which the trenches were placed, supported the stalks of the various new plants. As a result, this method also made it easier to water. It was a development which allowed Intensive Farming to emerge first in China, before it did in the Roman Empire. The Chinese invention of the Wheelbarrow around 100 AD likewise, further acted to make Han Agricultural productions more efficient, by making it easier to travel back and forth during in the intervals between each individual harvest.

A reconstruction of the Chinese invention of the wheelbarrow, originating back to the Early Han Era:

An all new plough was also invented during the Han Era which required only 1 man to control it, 2 oxen to pull it, and was complemented with 3 plowshares, a seed box to collect the drills, and a tool which turned down the soil. This new discovery hypothetically allowed the Chinese to sow a potential 45,730 m^2 in a single day.

Verdict: Tough call, but a point should probably be awarded to the foremostly agriculture centric society of Han, which had also even went so far as to place the farmer near the top of the social hierarchy, second only to Imperial Official. Furthermore, it should already be self evident that the Han made several more important discoveries to the fields to Agriculture than their Western counterparts did. Rome and Han: 1 all.


Hydraulics and Mechanics

The Hierapolis Sawmill was probably one of Imperial Rome’s greatest innovations in the realm of Mechanical Engineering. The sawmill, located in Asia Minor, was water powered and considered still to this day to be the earliest machine in the world to feature a “Crank and Connecting Rod” mechanism. It greatly assisted the Romans in converting wood, into lumber.

An artist’s impression of the Hierapolis Sawmill, another original Roman Invention:

It was precisely due to the invention of a Crank and Connecting Rod mechanism, which in time would also lead to the creation also of Steam Power. Created by a Greek Mathematician known today as Hero of Alexandria, his invention; the Aeolipile, was considered to be far ahead of its time, as proper Steam Power wasn’t invented until at least 1698, with the advent of the Steam Engine.

The way in which it worked, was that a bladeless turbine would spin, when the central water container was heated. Torque as a result, was produced by the resulting steam which exited from the turbine, reflecting a phenomena still evident today with Jet engines.

An illustration of Hero’s Aeolipile:

Though the Romans didn’t invent the Steam Engine themselves, they did however most notably already had the means to construct one regardless.

Apart from the earlier innovations of the Hierapolis Sawmill’s Crank and Connecting Rod Mechanism, and now also Steam Power derived from the Aeolipile, the Romans also had intimate knowledge regarding the existence of a Cylinder and Piston (used by metal force pumps), aside from non-return valves (utilized by water pumps) and gearing also (which water mills and clocks used).

All the five elements necessary to create a full, working Steam Engine as such, were already in existence by this point in time, long before such a status quo was replicated by their Chinese rivals, on the far side of the world, many hundreds of years later.

Rome’s utilization of the Crane meanwhile, also reached its heyday in the Imperial Era, an image of which can be seen below in this particular case of a “Pentaspastos”, or Five Pulley medium sized Crane, which could carry a 450 kg load:

Even the simplest Roman Crane however, the Trispastos had a mechanical advantage of 3:1 as it came equipped with three pulleys. Assuming that the average fully matured adult man could lift say 50 kg, then this is to say that the aforementioned pulley could help him displace a weight amounting to 150 kg.

The largest of the Roman Cranes however, the 10.4 metre high Polyspastos, had 5 pulleys and needed to be crewed by 4 different individuals, which would then allow them to lift a potential 3,000 kg. It could have even lifted up to 6 tonnes however if the appropriate adjustments were made.

A photo below depicting the large Roman crane known as the Polyspastos:

When compared to say Ancient Egypt for example, where 50 men were required to lift a 2,500 kg load up a ramp, the Polyspastos allowed one individual to quickly and easily lift 3 tonnes worth of materials, greatly increasing efficiency when it came to matters of construction.

In the East meanwhile at this point in time, the Han Chinese were also quite busy at work with their own contributions in the areas of Mechanics and Hydraulics.

The mechanical Belt Drive for example, was first introduced to Humanity by the Han Dynasty of China. The belt was an important innovation, as it was then used to assist in the wounding of silk fibres, onto the bobbins of weaver shuttles.

Speaking of which, the “Loom” had also first appeared onto the stage of the world by this point in time. Imminently, it would sooner rather than later be used to create the exotic material known as Silk, en masse. Silk would of course later go on to contribute to the vast wealth of China for thousands of years to come.

A historical depiction of the Han invention of the loom:

The Seismoscope meanwhile, was probably one of the greatest inventions of the Han Dynasty during China’s Early Imperial Era. Earthquakes, which had long plagued Sino civilization for time immemorial, often (as Earthquakes do) strike without warning, and were always highly catastrophic whenever they decided to arbitrarily strike.

Naturally in response to such an annoying threat, a Chinese Astronomer known as Zhang Heng invented the Seismoscope in order to detect which direction an Earthquake had, or was currently occurring in, in order to quickly direct relief efforts to the affected areas immediately. In 132 BC for example, it successfully detected and identified an Earthquake which was occuring 500 km in a specific direction, despite the fact that no tremors could be felt at the time.

A photo depicting Zhang’s device below (equipped with a “Crank and Catch” Mechanism, whenever an Earthquake was detected from afar, an inverted pendulum would swing to 1 of 8 directions. In response, a metal ball would then drop into a frog’s mouth, to indicate the direction in which an Earthquake was currently occurring):

Both the Romans and Han however, shared two things in common with regards to the field of Mechanical and Hydraulic Engineering: they both used water mills and chain pumps throughout the duration of their respective empires. In the case of the Roman Empire, the set of aforementioned Water Mills which were introduced back in the previous chapter, has been aptly described by 21st Century Historians to be, “the greatest known concentration of mechanical power in the ancient world”.

The Han however, took Hydraulic developments one step further, by inventing both a waterwheel powered Mechanical Puppet Theatre which featured many self moving automatons, and also the water clock. The water clock functioned in that it measured the passing of time, based on the regulated flow of liquid into, or out of a container.

The Han Era Water Clock, used by the Imperial Chinese to measure the passing of time and was made out of Bronze:

The creator of the Seismoscope, Zhang Heng was also the first to address the problem of the falling pressure head, with regards to the inflow water clock (which gradually slowed the timekeeping process over time) by setting up an additional tank between the reservoir and inflow vessel.

An primitive form of Air-conditioning likewise in the Han Era, was also developed and fully implemented to suit the elites of China. Large manually operated rotary fans, were complemented by water wheels which acted to occasionally soak the inhabitants of a hall in which it was placed.

Rotary fans most notably also led to the invention of the Winnowing machine, where they were actively also utilized, to separate grain from the casing of their seeds. A crank handle and tilt hammer was used to achieve this. Ideally, a cranked fan was to produce an airstream in order to power the utilized rotary fan, which in turn would be used on the harvested grain afterwards.

The winnowing machine as can be seen below in the form of a model which existed under the Han Era:

Verdict: Although the Han definitely made more contributions in this particular area, the Romans made quite a couple of highly important developments also, and thus their capabilities can be considered to have been equal. The steam powered machine for example; unbelievably advanced for its time. Still, the same could technically be said for China’s contributions in these fields also. Rome: and Han: 2 all.


Medicine

Because the Romans were not so expertly skilled at Medicine themselves, they often had to borrow experts and field knowledge based on the workings of the Ancient Greeks. Nonetheless, they were still able to produce some prominent figureheads such as Galen, or Celsus.

Roman Medicine at its heights, was characterized by an ever expanding knowledge on the fields of practical medicine, and saw great advances with regards to the field of Surgery. From the second century AD, literary texts contributed to by many physicians known as the “Medici”, allowed the Rome to assist in their understanding of which herbs were appropriate for a specific ailment.

Ippomarathron or Fennel for example was known to cure cases of painful urination, internal disorders such as stomach pains were meanwhile suppressed using Ra (Rhubarb), Aristolochia (Birthwort) was used to ease birthing pains, Aloe for wounds and Glikoriza (Liquorice) for calming internal organs.

Reliefs from well preserved archaeological sites such as Pompeii, have been known to have provided experts with tangible evidence, regarding the use of forceps, tweezers, wound retractors, collecting cups, needles and various sized scalpels to assist Roman doctors in surgery.

Roman Surgery tools, commonly used during the first and second centuries during the Early Roman Empire:

Using such tools, Roman doctors could perform a wide variety of surgeries, including but certainly not limited to: cataract removal, draining of fluids, trephination, and sometimes even the reversals of circumcision. It should be noted however, that like in most other societies at the time, Surgery was considered to be a last resort, due to the risks involved in such a dangerous and unsanitary practice at the time, giving rise to infections post-operation.

The first hospitals to appear in Italy were also introduced during the course of the Roman Empire, alas they were usually only reserved for slaves and soldiers however. Valetudinaria as they were called, were mainly rectangular and accompanied with 4 wings at any given time. Their maximum carrying capacity could accommodate up to 500 men, or 10% of an Imperial Legion.

A plan of a Roman Valetudinarium, near Düsseldorf, Germany, dating back to the late 1st century AD:

Roman physicians by this point in time, were also self-aware of their own limitations however, with regards to the treatment of certain wounds. Serious injuries to the brain, heart, liver, spine, intestines, kidneys and arteries for example, were widely considered by many at the time to have been beyond the expertise of many physicians alike.

Roman Medicine, often defined by common sense and supreme practicality, was sometimes also negated by a lot of pseudoscience at best, and obsolete practices at worst. Doctors would for example interpret a patient’s dreams in order to decide on what treatments a sick person would receive. Furthermore, was the Roman belief that drinking blood fresh from a recently slain Gladiator, would cure epilepsy. Needless to say, these treatments were usually redundant.

On the bright side however, the Romans did also correctly hypothesize (based on Greek knowledge retrieved from renowned Hellenic physician, Hippocrates) that the key to living longer lay at the base of a well balanced diet. Thanks to the efforts of Galen meanwhile, bandages were sterilized in wine first before being applied onto an injury.

Traditional Chinese Medicine (TCM) meanwhile, used still to this very day in certain parts of the world, was also used during the Han Dynasty 2,000 years ago. Whether there is or is not evidence for the effectiveness of TCM of course remains highly controversial even to this day.

Acupuncture (the inserting of needles in order to accelerate the body’s natural healing processes) was and still is one of these aforementioned controversial practices (practitioners of Acupuncture today have claimed that many physical and mental illnesses, can be cured by such a practice. Naturally, many others are quite sceptical of such claims, but it presumably would have also acted well as a placebo, which has been scientifically proven to sometimes be just as effective as the genuine cure), an acupuncture chart depicting the whereabouts of an individual’s “Meridian” lines, are seen below as follows:

But apart from these possible trivialities, the Han Chinese also made many notable practical contributions to the fields of Medicine however. Pulse diagnosis for one, was practiced by the physicians of the Han Dynasty which understood that an individual’s health could be ascertained merely by measuring their heart rate.

Because of this discovery, it allowed them to recognize that a healthy person was one who had a low resting heart rate for example. Not only that, but this also allowed them to often guess which treatments were required to nurse an individual of poor health, back to optimal standards with regards to physical condition.

Practical advice meanwhile, was given in regards to the act of “Clinical Lancing”, in order to remove an abscess. A Medical text known as the “Yellow Emperor’s Inner Canon” (黃帝內經) meanwhile, recognized the medical phenomena of the Circadian Rhythm; a biological clock known to have repeated itself every 24 hours or so. The text also noted the symptoms and reactions of people with various diseases of the liver, heart, spleen, lung, or kidneys in that aforementioned 24-hour period.

Aside from these practical treatments however, other more questionable cures which were said to have allowed for the better flow of blood throughout the Human body, also existed at the time, chief amongst which was the practice of Moxibustion (a process where dried plants are burnt near the surface of the body, with the intention to also dispel certain pathogenic influences):

Still, it was through the efforts of a Chinese physician, Zhang Zhongjing who much like his Roman counterparts also notably suggested that poor health was as a result of bad dieting, and in followed up in his medical text, the “Essential Medical Treasures of the Golden Chamber” (金匱要略) with advice on which foods were rich in which vitamins, in order to treat illnesses naturally with the resources of nature.

Another Chinese physician known as Hua Tuo, who had studied the Yellow Emperor’ Inner Canon, used it to develop a form of anesthesia, which he then applied to be used for surgical purposes. In addition to that development however, he also innovated a very particular type of cream which was recorded as having the ability to heal surgical wounds within a month’s time. And yet in another recorded example, he correctly identified a premature fetal death, which he then removed, curing the mother of her ailments.

Physical exercise meanwhile, was upheld by the Han (much like the Romans) as a way to stay naturally fit and healthy. Calisthenics were upheld in the Han Dynasty, as mentioned in the Chinese philosophical books, the “Mawangdui Silk Texts” (馬王堆帛書), which originally had many detailed images depicting the most appropriate forms of exercise to incorporate into one’s daily routine, in order live by a healthy lifestyle. Both Qigong and Taichi to this day, are considered to have been derived from Han Era Calisthenics.

Verdict: When the nonsense half from both civilizations’ understanding of Medicine is taken away, it would appear at first that the two were roughly equal. But due to the existence of hospitals, and a seemingly superior surgery knowledge, Rome slight edges out the Han Empire here. Which is not to say that the Chinese were necessarily inferior however, it would seem that Chinese understanding of natural medicine, often studied at an official level, edges out their Western counterparts. Rome: 3; Han: 2.


Astronomy

As the oldest of the natural sciences, Astronomy has a had a long a varied history in both the Roman and Han Empires alike.

The Roman astronomer Ptolemy, was said to have not only studied the motions of the heavenly bodies in depth, but had also mapped out roughly 1,000 different unique stars. Throughout the duration of Imperial Rome, Sundials were already being used to measure the passing of time, and could usually be found in most major towns. From the volcanic ashes of Pompeii alone for example, 35 sundials have been retrieved in modern times by archaeologists excavating at the site.

A photograph depicting a Roman Sundial as can be seen below:

Although he wrongly insisted that the Earth stood still, whilst the Sun moved around it, Ptolemy did however understand the conceptual notions of “Retrograde Motion”, the observation that despite the fact that planets in the night sky only rotated around the Earth in one direction, occasionally they would also appear to journey backwards.

He also subsequently followed up such observations with a plethora of complicated mathematical equations, in order to predict when each planet would go into retrograde motion. The Roman historian Cassius Dio meanwhile, records the observations of Halley’s Comet by Roman astronomers.

Most notably, the Romans also knew that the Earth was round. Sailors were already using the stars to navigate the High Seas, and contrary to Ptolemy’s own beliefs, certain Roman astronomers had already correctly hypothesized, that the Earth went around the Sun, rather than vice-versa. The Julian Calendar meanwhile recorded a year as being 365.25 days long, divided into 12 months in a year.

A later European Star Chart based on Ptolemy’s work:

Han Chinese achievements meanwhile in the realm of the Astronomy, were at least as equal to their Western counterparts. The Chinese astronomical text, the “Miscellaneous Readings of Cosmic Patterns and Pneuma Images” (天文氣象雜占), made many detailed, visual depictions of roughly 300 different climatic and astronomical features including clouds, rainbows, stars, constellations, and comets.

A comet which was observed in the Parthian Empire (247 BC–228 AD) at the time of the birth of Mithradates II (the same one which the Republican Romans had also observed prior to the assassination of Julius Caesar), was also likewise spotted by Chinese Astronomers in 135 BC.

The Han much like their Roman counterparts were also known to have used the Armillary Sphere (having invented the water powered variant themselves), in order to be used as a model for the Heavens above, the lines around the spheres represented the notions of Longitude and Latitude. Shown below is the variant designed by Astronomer Zhang Heng (who also invented the Seismoscope mentioned previously):

Halley’s comet, mentioned before as being accounted for by Cassius Dio, was likewise spotted by the Han Chinese, roughly 25 years before their Roman contemporaries back in 12 BC. What is now known to be a Supernova , was also likewise known to have been observed by Han astronomers in 185 BC.

Various comets were also discussed with regards to their positions in the sky, and which direction they were then currently moving, along with their colour, size, and for how long a period of time they were visible; all of which were recorded by the Chinese Historian, Sima Qian in his text, the “Records of the Grand Historian” (史记).

Zhang Heng’s works in accounting for the stars, allowed him to account for 2,500 different stars (as opposed to Ptolemy’s 1,000 observed stars), along with 124 constellations, an effort which had been aided by Sima Qian in his text, “A Monograph on Celestial Officials” (天官書).

And as for official Taichu Calendar (太初历) which was used officially by the Han Chinese meanwhile, whilst not as accurate as the Julian Calendar, still manage to calculate the tropical year, approximating it to 365. 385/1539 days, whilst asserting that the duration of the lunar month was 29. 43/81 days. Before long however, the former Sifen Calendar (古四分历), which had been introduced roughly 600 years prior by that point in time, was re-adopted by the Chinese, which made the same estimates as its Julian counterpart had done in the West, with regards to the length of a specific month and year.

Like their Roman counterparts, the Han Chinese also made full use of Sundials as well (this particular one was retrieved from Inner Mongolia, dating back to the 2nd Century AD):

Similar to Ptolemy however, the Han believed incorrectly to a Geocentric Model of the Solar System. Though the Chinese did not know that the Earth was round unlike their Roman counterparts, thanks to the efforts of Jing Fang, a musical theorist, it was quickly understood that the Moon was only bright since it reflected the light emanating from the Sun, a belief which was also shared by Zhang Heng.

Zhang in addition noted that sunlight didn’t always reach the Earth, a phenomenon due to the fact that the planet would obstruct the rays during a Lunar eclipse. Solar eclipses, were also observed by the said Han astronomer, whereby sunlight was prevented from reaching the Earth.

A common thought during the Han Dynasty that rain came from the areas beyond the Earth, were also disproved during this point in time, when an astronomer called Wang Chong argued in favour of an evaporation process, where rain came from water retrieved from the oceans instead, in his book, “Balanced Discourse” (论衡).

Verdict: Due to the overwhelming number of quality discoveries made by the the Middle Kingdom, this next point by far goes to Han China. The Chinese would not have “steamrolled” the Romans, however there can be no doubt that it would be they which should emerge victorious in the end. It seems very self-evident that the Chinese was a Space oriented society, with a detailed knowledge of celestial mechanics. Rome and Han: 3 all.


Naval Technology

Roman civilization by the time of the Empire had already had quite a long and proud maritime tradition, even despite the fact that the Romans were often fairly suspicious of travelling by the sea, since they thought that it was always infested with ocean going monsters at any given time. As a result, they often preferred to travel by land instead.

Nonetheless, Roman achievements with regards to Naval Technology can neither be ignored nor underplayed. Shipbuilding to the Ancient Romans was more than just a mere science as it often perceived to be today, rather it was an art first and foremost.

During the Imperial Era, the Romans abandoned their traditional methods of building the outer hull first, and instead replaced it with one used still to this day; constructing the frame of an ocean going vessel, before proceeding onto its hull and other crucial yet “secondary” components. Described to be a more systematic type of method, it dramatically shortened the time required to adequately construct a solitary ship.

A reconstruction of a Roman anchor:

Warships meanwhile, were designed to be light, yet inhumanly quick (due to the fact that it operated both on wind power and human labour) and better still, highly maneuverable. Each war vessel came equipped with a bronze ram, which was used to smash into an opposing enemy ship, severely acting to cripple or even if the damage was extensive enough, wholly sink it. Underwater halls meanwhile often came equipped with a ratio of 6:1 or 7:1.

The Trireme, traditionally the main war vessel of the Republican Era (509–27 BC), during Imperial Rome was largely superseded with the vastly superior Quadrireme and Quinquereme class warships of the Imperial Navy. In contrast to the Trireme before which was merely crewed by 50 rowers, the Roman Quinquereme had the capabilities to house a crew of 300 rowers, accompanied by 90 oars on each side.

A graphic below depicting the Quadrime Class Battleship, with its two distinctive “forts” located at the vessel’s bow and stern:

Speaking of which, the crew contrary to popular beliefs, was not made of slaves, rather they were formed from the ranks of Roman citizens who had signed up for the Legions, just like any other “normal” enlisted man. This deeply serves to imply the professionalized nature of the Imperial Navy as a whole also in addition.

Anyways, with a length of 45 m, and a width of 5 m, it was able to easily displace 100 tons of water, and was superior to the Republican Era Trireme with regards both to speed and the ability to perform to an excellent standard in only the most treacherous of seas.

A mosaic from Tunisia depicting a Trireme Class Battleship, which was still used during the Imperial Era:

Roman military ships in addition were greatly aided in maritime battles by a boarding device which was used to board hostile ships known as the Corvus. It was a movable bridge which could attach itself to an enemy ship, allowing the Romans to transfer their military experience on land, to their martial endeavours at sea. Naturally, this acted only to assure Roman superiority on the High Seas all throughout the Imperial Era.

Merchant class vessels on the other hand, was just as likely to be as advanced as their military cousins. Their underwater hulls were usually significantly shorter, with a ratio in some instances of 3:1, speaking of which were also usually alot deeper than the vessels of the military, disallowing them often to sail close to the coastal regions. Merchants ships were also “Marathon” runners, they were built to be efficient over long distances, hence neither speed nor manoeuvrability were a priority when it came to the construction of merchant vessels.

They also usually came equipped with two huge side rudders located off the stern, the likes of such which were controlled by a small tiller bar linked to a system of connecting cables. And depending on the size of these said vessels, often possessed between 1–3 square shaped sails, complemented also by a smaller triangular variant known as the “Supparum” at the vessel’s bow.

Carrying capacities often oscillated between 100–150 tonnes of cargo, with the maximum limit allowing some vessels to have been able to hold up to 3,000 amphorae (liquid holding containers). Roman merchant vessels have been known to be able to carry up to 600 tonnes of cargo though it should be noted, or to put it another way; the rough equivalent of carrying on board 12,000 amphorae. Such behemoths were estimated to be 46 metres in length, besting even the Quinquereme class battleship, which was 1 metre shorter.

A model of a Roman Merchant Ship:

Chinese Naval Technology on the other hand compared to their Western counterparts was relatively non-existent. The Romans, had already had a national standing Navy previously established in the year 311 BC, but it wouldn’t be for another 1,300 years during the Song Dynasty (960–1279 AD) until a similar maritime force was created by the Chinese to defend their coasts from foreign invasions, and ruthless pirates.

Though the Han Chinese didn’t fear ocean travel as the Romans did, they were mainly a landpower however and as such saw few improvements in the realm of Naval Technology. An Early Han Era shipyard discovered back in 1975 was said to be capable of producing ships for both the Merchant and Military navies, each of which was up to 30 metres long, 8 metres wide, and weighed 60 tonnes each. And yet another shipyard meanwhile was discovered to have existed in Anhui province, which focused specifically on the creation of military vessels.

The “Junk” for the first time in Chinese history was meanwhile introduced during the Han Era by the end of the 1st Century AD, and still to this day is considered to be China’s earliest seaworthy naval vessel. The Han Era Junk had a square ended bow and stern (forcing them to sail in the direction of the winds), a hull which was flat bottomed, and solid transverse bulkheads as a replacement for the structural ribs often found in Roman vessels.

The Junk, which most notably lacked a sternpost, attached the newly invented rudder to the back of their ships instead. The following Han Era Merchant ship model visually depicts such a notable detail down below as follows (where the rudder is mounted at the back of the boat):

Because of the new Chinese invention of the “Stern-Mounted Rudder” during this point in time meanwhile, which replaced the previously used Steering Oar, allowed Chinese ships much like their Roman counterparts to be quite capable of travelling unto the high seas at will, in order to exchange domestically produced goods and services, for their internationally produced counterparts.

A Han contemporary, Wan Chen, in his book, “On Strange Things of the South” meanwhile, notes that the Han had merchant ships which could carry crews of up to 700 individuals (twice as much as the largest Roman ships), vessels which could complement a cargo with weights of up to 260 tonnes (far short of Rome’s largest naval ships, which could carry up to 600 tonnes worth of cargo or 2.3 times more than a “Large” Han ship).

Wang explains with regards to the capabilities of such ships, as follows below:

“… these ships sail without avoiding strong winds and dashing waves, by the aid of which they can make great speed because their oblique rig, which permits the sails to receive from one another the breath of the wind, obviates the anxiety attendant upon having high masts.”

Though China did not have a standing navy, they did however maintain a reserve military force which was capable of waging war at sea, should the occasion have called for it (such forces were used in the invasions of Vietnam for example back in 111 BC, where Han Marines disembarked on the Eastern coasts of the Nam Viet Kingdom (204–111 BC), quickly routing the defending native forces).

The Imperial Navy itself meanwhile was said to be quite varied. There were 4 major classes of warships during the reign of the Han Dynasty, including the Wing, Stomach Striker, Bridge, and Spire Class battleships.

The “Stomach Striker” Class Warship for one was described to be what was essentially a huge mobile battering ram, smashing and decimating other ships on impact both from speed and sheer weight alone despite lacking a ram – a mistake which the Romans would and did not ever make historically during the same time period. They are depicted below:

Then there were also “Spire” Class Battleships, which were essentially oversized floating fortresses; the naval equivalent of siege towers. They could house up to countless hundreds of men equipped with siege engines, allowing them to easily overwhelm a fort or city’s defences once they got up “close and personal”. That was supposing that they ever got there however, as their large size often meant that they were also highly impractical to field, and an easy target to destroy via the launching of many flaming projectiles en masse and in unison at a single concentrated area.

Their inhumanly large sizes, made for what was essentially “shooting fish in a barrel”; often the foremost priorities of enemy fireships (as self-evident below in this artist’s impression):

If compared to land based military units in fact, the Wing Class was the equivalent of chariots, Stomach Strikers to battering rams, Spire Ships to mobile assault towers and Bridge ships to the Imperial Cavalry.

Verdict: As fanciful and exotic as Chinese Naval technology may appear to some, when objectively viewed from an impartial third party point of view, it becomes fairly apparent that Roman ships were usually qualitatively better than their Chinese counterparts. The fact also that Rome possessed a standing Navy whilst Han China did not, deeply implies their superiority in the fields of Naval Technology, an expertise which they also partially acquired from the Phoenicians and Greeks. Still, the Chinese made some outstanding contributions themselves in this field. Rome: 4; Han: 3.


Aeronautics

The Romans appeared to not have been all too enthusiastic when it came to the fields of Aeronautical Engineering, and presumably would have borrowed off the achievements of the Greeks. Although the records available for scholarly use today seldom mention anything with regards to an Imperial Roman “Flying Machine”, we do know that roughly 2,400 years ago, a Greek by the name of Archytas had already been known to have introduced the notion of a “Steam Powered Pigeon”.

Considered to be the world’s first artificial, self-propelled flying device, Archytas’ Pigeon was hollow on the inside, made out of wood and was shaped cylindrically with wings projected out to both sides of its body. The front meanwhile, was pointed in the shape of an actual pigeon’s beak. It was described to be quite aerodynamic, allowing it to reach maximum potential with regards both to velocity and flying distance.

Concept drawings for the original Flying Pigeon, as first invented by Archytas:

The opening of Archytas’ Pigeon was then connected to a boiler, which, as it begun to heat up, acted to create more and more steam, eventually exceeded the mechanical resistance of the connection, prompting the Pigeon to take flight along a suspended and lengthy wire, for roughly 200 metres before coming to a halt. Though thoroughly a Ancient Greek invention, it is quite likely that the Romans which eventually conquered Greece in its entirety, would eventually have come to also be quite familiar with such a concept themselves.

Roughly around the times Archytas in the East meanwhile, the Chinese had also been conducting flight experiments themselves, which saw the first introductions of a “Bamboo Helicopter”, debuting originally as a child’s toy. The bamboo helicopter flew, when a stick attached to its rotor was spun, creating the lift needed to fly when released from the appropriate heights.

An artist’s impression of Ancient Chinese children playing with these so called “Bamboo Helicopters”:

As for Aeronautical innovations made during the course of the Han Dynasty itself meanwhile, in great contrast to their Roman counterparts, the Han Chinese were able to make quite a few native developments and inventions themselves.

The Chinese kite, was one of these many aforementioned developments. The kite (whilst invented prior to the Han Era, was meanwhile significantly improved during it) was not only created as a means to transport messages to far off locations, but was also used to scare the enemies of the Chinese by mere appearance, as gravity defying objects were not a common sight, equally for all of China’s citizens alike.

In this respect, Kites were thus also made out of bamboo, because the sounds it was reported to make resembled the Chinese words of “fu, fu” (“beware, beware”), acting to further intimidate the soldiers of the opposition. Bamboo also made for a strong, light framework. A kite’s flying line meanwhile was made of Silk, for added tenacity.

A modern day Chinese Kite, which still partly resembles kites from the Han Era:

An early version meanwhile, of the Hot Air Balloon known as the “Sky Lantern” was meanwhile invented during the last years of the Chinese Han Dynasty, by a strategist known as Zhuge Liang.

The Ancient Chinese, for hundreds of years had already understood that as the temperature in a certain enclosure accelerated, the resulting heated air subsequently rose to the top, because it was less dense than the air surrounding it. Using this knowledge, they applied these ideas to create a Sky Lantern. A paper balloon to this extent was created to engulf a small lamp which was placed inside it, allowing the lantern to defy gravity altogether.



This post first appeared on E-Nagar | India News, Economy, Deceptions, Everyday Tit-bits| Mango-Man Since 2005, please read the originial post: here

Share the post

Han dynasty vs Roman empire: Science and technology

×

Subscribe to E-nagar | India News, Economy, Deceptions, Everyday Tit-bits| Mango-man Since 2005

Get updates delivered right to your inbox!

Thank you for your subscription

×