Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

Real-time view into the kinetics of viral assembly


Researchers have captured images of the formation of individual Viruses, offering a real-time view into the kinetics of viral assembly. The research provides new insights into how to fight viruses and engineer self-assembling particles.

"Structural biology has been able to resolve the structure of viruses with amazing resolution, down to every atom in every protein," said Vinothan Manoharan, the Wagner Family Professor of Chemical Engineering and Professor of Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences. "But we still didn't know how that structure assembles itself. Our technique gives the first window into how viruses assemble and reveals the kinetics and pathways in quantitative detail."

Manoharan and his team focused on single-stranded RNA viruses, the most abundant type of virus on the planet. In humans, RNA viruses are responsible for, among others, West Nile fever, gastroenteritis, hand, foot, and mouth disease, polio, and the common cold.

These viruses tend to be very simple. The virus Manoharan and his team studied, which infects E. coli bacteria, is about 30 nanometers in diameter and has one piece of RNA, with about 3600 nucleotides, and 180 identical Proteins. The proteins arrange themselves into hexagons and pentagons to form a soccer-ball-like structure around the RNA, called a capsid.
How those proteins manage to form that structure is the central question in virus assembly. Until now, no one had been able to observe viral assembly in real time because viruses and their components are very small and their interactions are very weak.

To observe the viruses, the researchers used an optical technique known as interferometric scattering microscopy, in which the light scattered off an object creates a dark spot in a larger field of light. The technique doesn't reveal the virus's structure but it does reveal its size and how that size changes with time.


The researchers attached viral RNA strands to a substrate, like stems of a flower, and flowed proteins over the surface. Then, using the interferometric microscope, they watched as dark spots appeared and grew steadily darker until they were the size of full-grown viruses. By recording intensities of those growing spots, the researchers could actually determine how many proteins were attaching to each RNA strand over time.

The researchers compared these observations to previous results from simulations, which predicted two types of assembly pathways. In one type of pathway, the proteins first stick randomly to the RNA and then rearrange themselves into a capsid. In the second, a critical mass of proteins, called a nucleus, must form before the capsid can grow.

See:

Rees F. Garmann, Aaron M. Goldfain, Vinothan N. Manoharan. Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome. Proceedings of the National Academy of Sciences, 2019; 201909223 DOI: 10.1073/pnas.1909223116

Posted by Dr. Tim Sandle, Pharmaceutical Microbiology


This post first appeared on Pharmaceutical Microbiology, please read the originial post: here

Share the post

Real-time view into the kinetics of viral assembly

×

Subscribe to Pharmaceutical Microbiology

Get updates delivered right to your inbox!

Thank you for your subscription

×