Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

The evolutionary impact of childhood cancer on the human gene pool



chromosome 7 syndrome :: Article Creator

Study Gives First View Of Centromere Variation And Evolution

A genomic study of human and selected nonhuman primate centromeres has revealed their unimaginable diversity and speed of evolutionary change.

In cell genetics, a centromere is the spot where two sister chromatids attach. A chromatid is one-half of a duplicated chromosome. United pairs of chromosomes have identifiable shapes because centromeres are not in a uniform position. As a cell prepares to divide, the machinery to separate and segregate chromosomes goes into action at each centromere location.

Unless the genetic material is distributed correctly between the two resulting cells, problems can arise. These include cancer, congenital disorders such as Down syndrome, and the inability of a fertilized cell to grow into a baby.

Although centromeres are vital to proper cell replication, the complexity of their genomic organization had been almost impossible to study. The lack of centromere sequences hindered exploration of how these regions help maintain genetic integrity.

Today, advances in long-read genome sequencing technologies, refined computerized genome assembly algorithms, and improved genome databases are enabling scientists to realize how greatly centromeres differ in size and structure. This opens new avenues toward figuring out what these differences might mean.

A first look at the factors behind the vast variations in centromeres is reported today, April 3, in Nature. The findings suggest that centromeres are likely highly individualized among people. A set of centromeres might even be a personal signature, just as we each have characteristic voice patterns, iris colorations and fingerprints that distinguish us from one another.

It's not yet known if certain centromere variations might make people susceptible to particular diseases.

Only the human X chromosome appears to be mostly immutable, with very similar sequences and structure across a diversity of humans.

The lead author of the Nature report is Glennis Logsdon, a recent postdoctoral scholar in Evan Eichler's genomic science lab at the University of Washington School of Medicine in Seattle. Logsdon is now a faculty member at the Perelman School of Medicine at the University of Pennsylvania. Eichler, who is also a Howard Hughes Medical Institute Investigator and a member of the Brotman Baty Institute for Precision Medicine, is the senior and corresponding author.

"This recent research is a direct application of both the Human Pangenome Reference Consortium and the Telomere-to-Telomere (T2T) sequencing efforts to provide new biological insights into complex regions of the human genome critical for chromosome segregation," noted Eichler. He is known for his work on genome evolution and its potential to create new functions and also for studies of genetic instability associated with disease.

To capture information on how human centromeres might have evolved, the team compared human genetic sequences of two completely sequenced human centromeres with those of some nonhuman primates. These were the chimpanzee and the orangutan, which are great apes and closely related species to humans, and the macaque, an Old World monkey and a more distant relative.

The scientists discovered that centromeres have been evolving much faster than other unique portions of the human genome. They are among the most mutation-prone regions of the human genome. The researchers also found that the unique sequences and structure of centromeres were the culmination of different evolutionary forces moving at different rates.

"The rapid mutation of the centromeric regions of the genome, along with their various mutation rates, has led to their diverse structure and organization," Logsdon noted. It was surprising to learn, the scientists said, that such vital areas of the genome were subject to swift changes, because, in general, critical functions tend to be genetically conserved.

The scientists plan to expand these initial efforts by developing more genetic maps of centromeres in diverse human genomes and across various organs and tissues, and to perform multigeneration family studies of centromere sequences. The complete sequence of centromeres from other nonhuman primates will provide a better model of the evolutionary forces shaping these regions.

Peering into the future, Logsdon and her team hope someday to apply their findings on centromeres to the design and engineering of customized human artificial chromosomes to transform medical science. Several years ago, Logsdon and her mentors worked on efforts to develop human artificial chromosomes that bypass centromeric DNA, which had then posed a constraint to mammalian synthetic genome research. Logsdon and others recently published another study last week in Science, which showed that enlarging the artificial chromosome DNA vector allowed for efficient formation of human artificial chromosomes in cells.

The centromere studies reported today were supported by funding from the National Institutes of Health National Human Genome Research Institute (R01 HG010169); National Institute of General Medical Sciences (K99 GM147352 ); National Cancer Institute (R01 CA266339); Intramural Research Program of the National Human Genome Research Institute; Shanghai Jiao Tong University 2030 Program (WH510363001-7); Center for Integration in Science of the Ministry of Aliyah, Israel; and the Howard Hughes Medical Institute. This work utilized the computational resources of the National Institutes of Health High Performance Computing Biowulf Linux cluster.

Method of Research

Experimental study

Article Title

The variation and evolution of complete human centromeres

Article Publication Date

3-Apr-2024

COI Statement

Sergey Nurk is now an employee of Oxford Nanopore Technologies, Inc.; Sergey Koren has received travel funds to speak at events hosted by Oxford Nanopore Technologies, Inc.; Evan E. Eichler is a scientific advisory board member of Variant Bio, Inc.

Disclaimer: AAAS and EurekAlert! Are not responsible for the accuracy of news releases posted to EurekAlert! By contributing institutions or for the use of any information through the EurekAlert system.


Wetin Be Down Syndrome?

Wia dis foto come from, Getty Images

21 March 2024

Di international day to raise public awareness around Down syndrome (DS) na on 21 March.

United Nations don dey officially observe World Down Syndrome Day since 2012.

E dey fall on di 21st day of di third month of di year, "to signify di uniqueness of di triplication (trisomy) of di 21st chromosome wey dey cause Down syndrome", organisers tok.

Dis year theme na 'End di Stereotypes.' E aim to fight di idea about pipo wit Down syndrome and wetin dem fit be like or wetin dem fit do.

Wetin e be?

Down syndrome na wen dem born pikin wit extra chromosome. Di genetic condition dey affect pesin learning and physical features.

E no be disease, illness or condition wey pesin fit catch. Down syndrome dey happun naturally - e no get cause.

Pipo wey dem born wit am usually get extra chromosome by chance, becos of change in di sperm or egg before dem born di pikin.

E dey exist in all regions across di globe and dey commonly result in different effects on learning styles, physical characteristics and health, UN tok.

We get three types: trisomy 21 (wey be di most common type - wia three copies of chromosome 21 dey), translocation and mosaicism.

Di syndrome imself dey named afta Dr John Langdon Down wey be di first pesin to categorise am.

Wetin be di five signs of Down syndrome?

Wia dis foto come from, Getty Images

Wetin we call dis foto,

E get some physical characteristics of Down syndrome

Physical signs fit include:

  • Flattened face, especially di bridge of di nose
  • Almond shape eyes wey dey slant up
  • Single line across di palm of di hand (palmar crease)
  • Shorter in height as children and adults
  • (Source: US Centers for Disease Control and Prevention)

    Any treatment dey for Down syndrome?

    Wia dis foto come from, Getty Images

    Wetin we call dis foto,

    Di quality of life of pipo wit DS fit improve by looking afta dia health care needs

    Treatments no dey for di syndrome.

    Dem fit give help base on each pesin physical and intellectual need, strength, and limitation.

    Adequate access to health care, early intervention programme and inclusive education, as well as correct research, dey important to di growth and development of di individual, UN tok.

    Di quality of life of pipo wit Down syndrome (DS) fit see improvement by meeting dia health care need, e add.

    Dis fit include regular check-ups wit health professionals to monitor mental and physical condition and to provide timely intervention such as physiotherapy, occupational therapy, speech therapy, counselling or special education, e tok.

    Dis one dey facilitate dia participation in mainstream society and di fulfilment of dia personal potential.

    Wia dis foto come from, Getty Images

    Wetin we call dis foto,

    Many wit DS fit go school and work

    Many dey live good quality of life, attend mainstream school and work, and some dey marry and live independently.

    Some get secured high-profile jobs, such as Mar Galcerán for Spain, wey dem elect as lawmaker for Valencia regional assembly for di east of di kontri.

    She be di first pesin wit di condition to join European regional or national parliament.

    Wia dis foto come from, Getty Images

    Wetin we call dis foto,

    Mar Galcerán

    Also Ellie Goldstein dey, wey don make history as di first model wit DS to feature on di front cover of Vogue - even though doctors don tok say she no go fit waka or tok becos of di syndrome.

    And Heidi Crowter na British disability rights activist wit DS wey dey challenge law wey dey allow make dem fit comot foetuses wit di condition up until birth.

    She don take her case to di European Court of Human Rights. She tok say di current rules dey discriminatory.

    Topics Wey Dem Resemble

    Another thing we de for inside dis tori

    Human Cytogenetics: 46 Chromosomes, 46 Years And Counting

    Tjio, H. J. & Levan, A. The chromosome numbers of man. Hereditas 42, 1–6 (1956).This paper provides the first correct count of human chromosome number, which was independently confirmed by Ford and Hamerton (reference 3 ) in the same year.

    Article  Google Scholar 

    Hsu, T. C. Human and Mammalian Cytogenetics: an Historical Perspective (Springer, New York, 1979).

    Book  Google Scholar 

    Ford, C. E. & Hamerton, J. L. The chromosomes of man. Nature 178, 1020–1023 (1956).

    Article  CAS  PubMed  Google Scholar 

    Painter, T. S. Studies in mammalian spermatogenesis. II. The spermatogenesis of man. J. Exp. Zool. 37, 291–321 (1923).

    Article  Google Scholar 

    Watson, J. R. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

    Vogel, F. & Motulsky, A. G. Human Genetics: Problems and Approaches (Springer, Berlin, 1997).

    Book  Google Scholar 

    Chicago Conference 1966. Standardization in Human Cytogenetics. Birth Defects: Original Article Series Vol. 2, No. 2 (The National Foundation, New York, 1966).

    Lejeune, J., Gautier, M. & Turpin, M. R. Etude des chromosomes somatiques de neuf enfants mongoliens. C. R. Acad. Sci. (Paris) 248, 1721–1722 (1959).

    CAS  Google Scholar 

    Ford, C. E., Miller, O. J., Polani, P. E., de Almeida, J. C. & Briggs, J. H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet 1, 711–713 (1959).

    Article  CAS  PubMed  Google Scholar 

    Jacobs, P. A. & Strong, J. A. A case of human intersexuality having a possible XXY sex-determininig mechanism. Nature 183, 302–303 (1959).

    Article  CAS  PubMed  Google Scholar 

    Clendenin, T. M. & Bernirschke, K. Chromosome studies on spontaneous abortions. Lab. Invest. 12, 1281–1292 (1963).

    CAS  PubMed  Google Scholar 

    Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1501 (1960).

    Google Scholar 

    Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

    Heisterkamp, N., Stam, K., Groffen, J., de Klein, A. & Grosveld, G. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315, 758–761 (1985).

    Article  CAS  PubMed  Google Scholar 

    Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    CAS  PubMed  Google Scholar 

    Druker, B. J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

    Lejeune, J. Et al. Trois cas de deletion partielle du bras court d'un chromosome 5. C. R. Acad. Sci. (Paris) 257, 3098–3102 (1963).

    CAS  Google Scholar 

    Lele, K. P., Penrose, L. S. & Stallard, H. B. Chromosome deletion in a case of retinoblastoma. Ann. Hum. Genet. 27, 171–174 (1963).

    Article  CAS  PubMed  Google Scholar 

    Cavenee, W. K. Et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

    Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

    Donahue, R. P., Bias, W. B., Renwick, J. H. & McKusick, V. A. Probable assignment of the Duffy blood group locus to chromosome 1 in man. Proc. Natl Acad. Sci. USA 61, 949–955 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Caspersson, T. Et al. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 219–222 (1968).This paper introduces the technique for identifying chromosomes by their banding pattern, a revolutionary step in human cytogenetics.

    Article  CAS  PubMed  Google Scholar 

    Yunis, J. J. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum. Genet. 56, 293–298 (1981).

    Article  CAS  PubMed  Google Scholar 

    Paris Conference 1971. Standardization in Human Cytogenetics. Birth Defects: Original Article Series Vol. 8, No. 7 (The National Foundation, New York, 1972); also in Cytogenetics 11, 313–362 (1972).

    Harris, H. & Watkins, J. F. Hybrid cells from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature 205, 640–646 (1965).

    Article  CAS  PubMed  Google Scholar 

    Ephrussi, B. & Weiss, M. C. Interspecific hybridization of somatic cells. Proc. Natl Acad. Sci. USA 53, 1040–1042 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Weiss, M. C. & Green, H. Human–mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl Acad. Sci. USA 58, 1104–1111 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Ruddle, F. H. Et al. Linkage relationships of seventeen human gene loci as determined by man–mouse somatic cell hybrids. Nature New Biol. 232, 69–73 (1971).

    Article  CAS  PubMed  Google Scholar 

    Budarf, M. L. Et al. Regional localization of over 300 loci on human chromosome 22 using a somatic cell hybrid mapping panel. Genomics 35, 275–288 (1996).

    Article  CAS  PubMed  Google Scholar 

    Cox, D. R., Burmeister, M., Price, E. R., Kim, S. & Myers, R. M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

    Carrano, A. V., Gray, J. W., Langlois, R. G., Burkhart-Schultz, K. J. & Van Dilla, M. A. Measurement and purification of human chromosomes by flow cytometry and sorting. Proc. Natl Acad. Sci. USA 76, 1382–1384 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Langlois, R. G., Yu, L. C., Gray, J. W. & Carrano, A. V. Quantitative karyotyping of human chromosomes by dual beam flow cytometry. Proc. Natl Acad. Sci. USA 79, 7876–7880 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Trask, B., van den Engh, G., Mayall, B. & Gray, J. W. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping. Am. J. Hum. Genet. 45, 739–752 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

    Trask, B., van den Engh, G., Nussbaum, R., Schwartz, C. & Gray, J. Quantification of the DNA content of structurally abnormal X chromosomes and X chromosome aneuploidy using high resolution bivariate flow karyotyping. Cytometry 11, 184–195 (1990).

    Article  CAS  PubMed  Google Scholar 

    Lebo, R. V. Chromosome sorting and DNA sequence localization. Cytometry 3, 145–154 (1982).

    Article  CAS  PubMed  Google Scholar 

    Krumlauf, R., Jeanpierre, M. & Young, B. D. Construction and characterization of genomic libraries from specific human chromosomes. Proc. Natl Acad. Sci. USA 79, 2971–2975 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Van Dilla, M. A. & Deaven, L. L. Construction of gene libraries for each human chromosome. Cytometry 11, 208–218 (1990).

    Article  CAS  PubMed  Google Scholar 

    Telenius, H. Et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263 (1992).

    Article  CAS  PubMed  Google Scholar 

    Mefford, H. C., Linardopoulou, E., Coil, D., van den Engh, G. & Trask, B. J. Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non-homologous chromosomes. Hum. Mol. Genet. 10, 2363–2372 (2001).

    Article  CAS  PubMed  Google Scholar 

    John, H. A., Birnstiel, M. L. & Jones, K. W. RNA–DNA hybrids at the cytological level. Nature 223, 582–587 (1969).

    Article  CAS  PubMed  Google Scholar 

    Pardue, M. L. & Gall, J. G. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl Acad. Sci. USA 64, 600–604 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Langer-Safer, P. R., Levine, M. & Ward, D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA 79, 4381–4385 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Van Prooijen-Knegt, A. C. Et al. In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp. Cell Res. 141, 397–407 (1982).

    Article  CAS  PubMed  Google Scholar 

    Landegent, J. E. Et al. Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature 317, 175–177 (1985).This report shows, for the first time, the localization of a human gene to chromosome bands by non-isotopic techniques.

    Article  CAS  PubMed  Google Scholar 

    Korenberg, J. R., Chen, X. N., Adams, M. D. & Venter, J. C. Toward a cDNA map of the human genome. Genomics 29, 364–370 (1995).

    Article  CAS  PubMed  Google Scholar 

    Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baao, F. & van der Ploeg, M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370 (1987).

    Article  CAS  PubMed  Google Scholar 

    Lansdorp, P. M. Et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

    Meyne, J. & Goodwin, E. H. Direction of DNA sequences within chromatids determined using strand-specific FISH. Chromosome Res. 3, 375–378 (1995).

    Article  CAS  PubMed  Google Scholar 

    Bailey, S. M., Meyne, J., Cornforth, M. N., McConnell, T. S. & Goodwin, E. H. A new method for detecting pericentric inversions using COD-FISH. Cytogenet. Cell Genet. 75, 248–253 (1996).

    Article  CAS  PubMed  Google Scholar 

    Cornforth, M. N. & Eberle, R. L. Termini of human chromosomes display elevated rates of mitotic recombination. Mutagenesis 16, 85–89 (2001).

    Article  CAS  PubMed  Google Scholar 

    Trask, B. J. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 7, 149–154 (1991).

    Article  CAS  PubMed  Google Scholar 

    Lichter, P. Et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1990).

    Article  CAS  PubMed  Google Scholar 

    BAC Resource Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, 953–958 (2001).This paper reports the assembly and application of more than 8,000 FISH-mapped, sequence-tagged BACs, which tightly integrate the cytogenetic and sequence maps in the human genome.

    Liu, P. Et al. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044 (1993).

    Article  CAS  PubMed  Google Scholar 

    Kundu, M. & Liu, P. P. Function of the inv(16) fusion gene CBFB–MYH11. Curr. Opin. Hematol. 8, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

    Knoll, J. H. Et al. Angelman and Prader–Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).

    Article  CAS  PubMed  Google Scholar 

    Lalande, M. Parental imprinting and human disease. Annu. Rev. Genet. 30, 173–195 (1996).

    Article  CAS  PubMed  Google Scholar 

    Stankiewicz, P. & Lupski, J. R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74–82 (2002).

    Article  CAS  PubMed  Google Scholar 

    Cremer, T. Et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum. Genet. 74, 346–352 (1986).

    Article  CAS  PubMed  Google Scholar 

    Pinkel, D., Straume, T. & Gray, J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl Acad. Sci. USA 83, 2934–2938 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Lupski, J. R. Et al. DNA duplication associated with Charcot–Marie–Tooth disease type 1A. Cell 66, 219–232 (1991).

    Article  CAS  PubMed  Google Scholar 

    Tkachuk, D. C. Et al. Detection of bcr–abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250, 559–562 (1990).This paper reports the identification of the Philadelphia chromosome in interphase nuclei using two-colour FISH.

    Article  CAS  PubMed  Google Scholar 

    Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Kitsberg, D. Et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  PubMed  Google Scholar 

    van den Engh, G., Sachs, R. & Trask, B. J. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science 257, 1410–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

    Wiegant, J. Et al. High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591 (1992).

    Article  CAS  PubMed  Google Scholar 

    Parra, I. & Windle, B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet. 5, 17–21 (1993).

    Article  CAS  PubMed  Google Scholar 

    Kuwano, A., Ledbetter, S. A., Dobyns, W. B., Emanuel, B. S. & Ledbetter, D. H. Detection of deletions and cryptic translocations in Miller–Dieker syndrome by in situ hybridization. Am. J. Hum. Genet. 49, 707–714 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

    Schrock, E. Et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).This paper and reference 70 show how each human chromosome can be painted with one of 24 colours for automated karyotype analysis.

    Article  CAS  PubMed  Google Scholar 

    Speicher, M. R., Gwyn Ballard, S. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375 (1996).

    Article  CAS  PubMed  Google Scholar 

    Lichter, P. Et al. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl Acad. Sci. USA 85, 9664–9668 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Pinkel, D. Et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Vooijs, M. Et al. Libraries for each human chromosome, constructed from sorter-enriched chromosomes by using linker–adaptor PCR. Am. J. Hum. Genet. 52, 586–597 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

    Meltzer, P. S., Guan, X. Y., Burgess, A. & Trent, J. M. Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet. 1, 24–28 (1992).

    Article  CAS  PubMed  Google Scholar 

    Ried, T., Landes, G., Dackowski, W., Klinger, K. & Ward, D. C. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum. Mol. Genet. 1, 307–313 (1992).

    Article  CAS  PubMed  Google Scholar 

    Mrozek, K., Heinonen, K., Theil, K. S. & Bloomfield, C. D. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes Cancer 34, 137–153 (2002).

    Article  PubMed  Google Scholar 

    Liyanage, M. Et al. Multicolour spectral karyotyping of mouse chromosomes. Nature Genet. 14, 312–315 (1996).

    Article  CAS  PubMed  Google Scholar 

    Loucas, B. D. & Cornforth, M. N. Complex chromosome exchanges induced by γ-rays in human lymphocytes: an mFISH study. Radiat. Res. 155, 660–671 (2001).

    Article  CAS  PubMed  Google Scholar 

    Sachs, R. K., Hlatky, L. R. & Trask, B. J. Radiation-produced chromosome aberrations: colourful clues. Trends Genet. 16, 143–146 (2000).

    Article  CAS  PubMed  Google Scholar 

    Knight, S. J. Et al. An optimized set of human telomere clones for studying telomere integrity and architecture. Am. J. Hum. Genet. 67, 320–332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Flint, J. Et al. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet. 9, 132–140 (1995).

    Article  CAS  PubMed  Google Scholar 

    Jauch, A. Et al. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc. Natl Acad. Sci. USA 89, 8611–8615 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Weinberg, J. & Stanyon, R. Comparative painting of mammalian chromosomes. Curr. Opin. Genet. Dev. 7, 784–791 (1997).A review of the chromosomal rearrangements that have occurred during evolution as detected by cross-species FISH using chromosome-specific paints and locus-specific probes.

    Article  Google Scholar 

    Stanyon, R. Et al. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet. Cell. Genet. 84, 150–155 (1999).

    Article  CAS  PubMed  Google Scholar 

    Ostrander, E. A. & Kruglyak, L. Unleashing the canine genome. Genome Res. 10, 1271–1274 (2000).

    Article  CAS  PubMed  Google Scholar 

    Breen, M., Thomas, R., Binns, M. M., Carter, N. P. & Langford, C. F. Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61, 145–155 (1999).

    Article  CAS  PubMed  Google Scholar 

    Kallioniemi, A. Et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).The first paper to describe CGH, which makes it possible to detect loss and gain of chromosomal material in non-dividing tumour cells.

    Article  CAS  PubMed  Google Scholar 

    Shayesteh, L. Et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999).

    Article  CAS  PubMed  Google Scholar 

    Klein, C. A. Et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Pinkel, D. Et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998).Provides the first proof-of-principle demonstration of array-CGH using BAC clones that were selected to mark specific points along the genome as hybridization targets.

    Article  CAS  PubMed  Google Scholar 

    Schriml, L. M. Et al. Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than 1 kb in size. Biotechniques 27, 608–613 (1999).

    Article  CAS  PubMed  Google Scholar 

    Zhong, X. B., Lizardi, P. M., Huang, X. H., Bray-Ward, P. L. & Ward, D. C. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl Acad. Sci. USA 98, 3940–3945 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

    Suzuki, H. Et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet. 31, 141–149 (2002).

    Article  CAS  PubMed  Google Scholar 

    Iyer, V. R. Et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  PubMed  Google Scholar 

    Gray, J. W. Et al. Flow karyotyping and sorting of human chromosomes. Cold Spring Harbor Symp. Quant. Biol. 51, 141–149 (1986).

    Article  CAS  PubMed  Google Scholar 

    Zitzelsberger, H. F., O'Brien, B. & Weier, H. U. G. In FISH Technology (eds Rautenstrauss, B. & Liehr, T.) 408–424 (Springer, Heidelberg, 2002).

    Book  Google Scholar 

    McNeil, N. & Ried, T. Novel molecular cytogenetic techniques for identifying complex chromosomal rearrangements: technology and applications in molecular medicine. Expert Rev. Mol. Med. [online] 14 September 2000 〈http://www-ermm.Cbcu.Cam.Ac.Uk/00001940h.Htm〉 (2000).

    Padilla-Nash, H. M. Et al. Molecular cytogenetic analysis of the bladder carcinoma cell line BK-10 by spectral karyotyping. Genes Chromosomes Cancer 25, 53–59 (1999).

    Article  CAS  PubMed  Google Scholar 








    This post first appeared on Congenital Hearing Loss, please read the originial post: here

    Share the post

    The evolutionary impact of childhood cancer on the human gene pool

    ×

    Subscribe to Congenital Hearing Loss

    Get updates delivered right to your inbox!

    Thank you for your subscription

    ×