Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

SOLVED: Stateful LSTM in Keras: reset with fit, evaluate, and predict?

Troy D:

I'd like to expand on this question of when to Reset states.

Stateful LSTM: When to reset states?

Suppose I train a stateful Model as such:

for i in range(epochs):, y_train, epochs=1, batch_size=1, shuffle=False)

My training and test sets are from one time-series data set, with the test set following immediately after the training set.

Next, I want to Evaluate the test set and get an array of the predictions.

score = model.evaluate(X_test, y_test, batch_size=1, verbose=True)

prediction = model.predict(X_test, batch_size=1)

I feel as though resetting the model state at the end of the training loop will cause the evaluate or predict steps to be wrong, at least at the beginning of the set. Is that so? Should I not reset the state for the last epoch if the data continues sequentially into the test set?

Also, after I evaluate on the test set, do I need to restore the model's state to what it was at the end of the training set before I try to predict? Should I copy the model? Save and reload it?

Posted in S.E.F
via StackOverflow & StackExchange Atomic Web Robots
This Question have been answered

This post first appeared on Stack Solved, please read the originial post: here

Share the post

SOLVED: Stateful LSTM in Keras: reset with fit, evaluate, and predict?


Subscribe to Stack Solved

Get updates delivered right to your inbox!

Thank you for your subscription