Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

How Genes Influence Your Vitamin E Requirements

Tags: vitamin

Vitamin E is a much discussed nutrient in recent times. The association between Vitamin E and skin health is, especially, a reason the vitamin has become so popular.

Vitamin E is a fat-soluble nutrient that is available in animal sources like fish and oysters, dairy products like butter and cheese, and plant sources like vegetable oils, nuts and seeds, and green vegetables like broccoli and spinach.

There are 8 different chemical forms of vitamin E found. 

  • Tocopherols - alpha, beta, gamma, and delta
  • Tocotrienol - alpha, beta, gamma, and delta

All of these have varied effects on the body. Out of these, alpha-tocopherol (α-tocopherol) is the most active form while gamma-tocopherol (γ-tocopherol) is the most common form found in foods consumed by North Americans.

Here are some of the significant functions of vitamin E:

Vitamin E as an antioxidant

Vitamin E is a proven anti-oxidant (substances that prevent oxidation). It helps prevent cell damage from free-radicals.

Free radicals are active molecules in the body that can harm the cells in the body and prevent the cells from staying healthy.

Free-radical damage is the most common reason for skin problems including aging of the skin, development of wrinkles, fine lines, and dark spots, and skin becoming loose and saggy. 

Vitamin E in both dietary forms and topical forms (external application in the form of creams, gels, and serums) are beneficial for healthy skin.

Vitamin E and immunity - Vitamin E helps improve immune response and provides protection against various infections by keeping the immune cells healthy.

Vitamin E and lifestyle risks - Lifestyle risks like smoking, drinking, and UV exposure can harm the cells in the body. Vitamin E provides protection against these.

Vitamin E and degenerative diseases - There are many studies that relate recommended amounts of vitamin E to reduced risks of developing diseases like cancer, high blood pressure, and coronary heart diseases. This association is still being studied intensely.

The Story Behind Vitamin E

The early 1900s was the time when some of the initial vitamins like vitamin A, B, C, and D were discovered. Scientists and biochemists were involved in intense research identifying what else these vitamins could and couldn’t do.

Herbert McLean Evans and Katherine Bishop were anatomists experimenting with rats at the University of California. They fed rats only milk and studied how the rats were progressing. While they found that the rats were growing healthier, they were not reproducing!

They tried modifying the diet and included some starch and animal fats. The female rats became pregnant but were unable to carry the pregnancy to full term. 

That’s when they introduced lettuce as a part of the diet. Now they found that the rats got pregnant and delivered healthy babies. 

It was then recorded that healthy and natural sources of food were important for fertility. A particular nutrient was extracted from lettuce and was named vitamin E in 1922.

Since the nutrient was related to fertility in rats, it was given a Greek name ‘Tocopherol’. In Greek, ‘toco’ meant birth, ‘pher’ meant carrying, and ‘ol’ referred to it being a chemical. 

Molecular Role Of Vitamin E- Getting Technical

Once you consume foods rich in vitamin E or vitamin E supplements, vitamin E is absorbed in the body like any regular fat source that you eat. Vitamin E is absorbed by the small intestine and from here, it reaches the blood and is circulated around.

The liver absorbs most of the vitamin E from the blood. You should know that the liver only acts on alpha-tocopherol and converts it into a form that is usable by the cells in the body. All other types of vitamin E are sent (excreted) out. 

The converted form of alpha-tocopherol is now sent out to the blood and reaches all the tissues and cells.

Excess vitamin E is stored in the adipose tissues (fat-storing tissues present in several locations in the body)  just like how normal fat is stored and is used when needed. 

Did You Know?

The use of vitamin E in the cosmetics and skincare industry has become quite common. Every product in the market seems to have added vitamin E to it.

Are all of these actually beneficial?

No, says research.

Vitamin E needs to remain stable to be useful for your skin. Most generic skincare products use unstable vitamin E forms that get destroyed as soon as you expose the product to light and air.

Hence the products you religiously use may do nothing to your skin.

The next time you buy a vitamin E-enriched product, make sure the base nutrient used is an ester form of vitamin E (a type of compound produced from acids) that is more stable and is also easily absorbed by the skin.

What Happens When You Take Excess Of Vitamin E

You cannot get vitamin E toxicity by just consuming foods rich in vitamin E. You get it only when you consume excess supplements. Here is a list of maximum levels of vitamin E that your body can handle safely.

Vitamin E toxicity can lead to internal and external blood loss (hemorrhage). When you consume excess vitamin E supplements for a longer duration, the side effects get worse. 

What Happens When You Have Vitamin E Deficiency

For normal healthy individuals, vitamin E deficiency is quite rare. These individuals can easily get their recommended values only from regular food that they eat. 

If a person gets vitamin E deficient because of certain genetic and non-genetic reasons mentioned below, it can result in:

  • Muscle damage
  • Loss of motion in hands and legs
  • Vision problems
  • Lowered immunity 
  • General tiredness

Non-Genetic Factors Affecting Vitamin E Levels

  • Fat-malabsorption disorders - Certain health conditions and damage to the intestine can prevent the small intestine from being able to absorb fat. Since vitamin E is a fat-soluble nutrient, that is also not absorbed in the right quantities. This can lead to vitamin E deficiency. Treating the disorder and compensating with a larger dose of supplements help.
  • Premature birth - Children that are born prematurely (weighing less than 1.5 kg) can be vitamin E deficient at birth. This can cause an increased risk of infections and vision problems.
  • Bile-related disorders - Some diseases like cystic fibrosis or Crohn’s disease can cause lowered levels of bile. Bile is necessary to absorb vitamin E from the small intestine. These disorders can also cause vitamin E deficiency.

Genetic Factors Affecting Vitamin E Levels

Genetically, few people can have higher levels of vitamin E in the body and a few others can have lower levels. You will have to plan your vitamin E intake based on your genetic design.

APOA5 gene - The APOA5 gene is responsible for producing (encoding) the Apolipoprotein A-V protein. This is important for transporting fats including vitamin E. There are two SNPs of this gene that alter the vitamin E needs in the body.

CYP4F2 gene - The CYP4F2 gene produces the CYP4F2 enzyme. This helps in breaking down vitamin E. A particular allele of the gene is known to result in higher levels of vitamin E in the body.

TTPA gene - The TTPA gene helps produce the alpha-tocopherol transfer protein. This helps in transferring vitamin E in the body. Few mutations of the TTPA gene can cause Ataxia with Vitamin E Deficiency (AVED). AVED is another very rare inherited disorder that can lead to vitamin E deficiency.

Here, the transfer protein required to process vitamin E into cell-usable forms is absent or doesn’t function right. AVED results in vitamin E deficiency and individuals with these mutations are likely to require more vitamin E than recommended levels.

MTTP gene - The MTTP gene is responsible for producing a particular type of protein called microsomal triglyceride. This protein, in turn, helps produce beta lipoproteins. Beta lipoproteins carry fats in the food you eat from the intestine to the blood. These also carry fat-soluble vitamins like vitamin E. 

There are about 60 different mutations of the MTTP gene that cause a condition called abetalipoproteinemia.This is a very rare inherited disease that hinders dietary fat absorption in the body.

People with abetalipoproteinemia are likely to require more vitamin E levels. They will need large doses of vitamin E supplements (5-10 grams a day) to prevent getting vitamin E deficient.

Recommendations For Healthy Vitamin E Levels

  • Unless you have conditions that can prevent the absorption of vitamin E from food, it is recommended you get your daily dose of the nutrient from the foods you eat. Include a variety of greens, dairy products, and fatty fishes in your everyday diet plan.
  • Snack on nuts and seeds. These are amazing sources of vitamin E.
  • If certain factors and health issues prevent your body from absorbing the right amounts of vitamin E from your intestine, then consider supplements. Talk to your doctor or a nutritionist about the right doses needed.
  • Genetically, few people can be prone to vitamin E deficiency. They definitely have to rely on supplements.

Summary

  1. Vitamin E is a fat-soluble vitamin that is especially known to maintain healthy skin.
  2. Vitamin E is available naturally in eight forms. The alpha-tocopherol form is the major kind used by the body.
  3. This nutrient is an excellent antioxidant and prevents free radical damage to the cells in the body.
  4. While vitamin E deficiency in healthy individuals is rare, vitamin E toxicity can happen when you consume excess supplements.
  5. There are many health conditions that can prevent the normal absorption of vitamin E from the intestine and hence leads to a possible deficiency.
  6. Genetically, few people can be prone to requiring more vitamin E levels than normally recommended doses. Get your genetic testing done to know your recommended vitamin E values.

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266234/

https://academic.oup.com/jn/article/135/3/363/4663706

http://www.vivo.colostate.edu/hbooks/pathphys/topics/vitamine.html

https://pubmed.ncbi.nlm.nih.gov/23183290/

https://www.healthline.com/health/food-nutrition/vitamin-e-deficiency

https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/

 https://www.healthline.com/health/all-about-vitamin-e

https://www.hsph.harvard.edu/nutritionsource/vitamin-e/

https://lpi.oregonstate.edu/mic/health-disease/skin-health/vitamin-E

The post How Genes Influence Your Vitamin E Requirements appeared first on Xcode Life.



This post first appeared on How To Cure Lactose Intolerance – Xcode.in, please read the originial post: here

Share the post

How Genes Influence Your Vitamin E Requirements

×

Subscribe to How To Cure Lactose Intolerance – Xcode.in

Get updates delivered right to your inbox!

Thank you for your subscription

×