Get Even More Visitors To Your Blog, Upgrade To A Business Listing >>

FORD MODULAR SWAP GUIDE: Intakes & Induction

Even though modular engines were delivered with mass air Intake systems, you don’t have to stick with Ford’s design. The aftermarket intake manufacturers have offered a wide selection of units for modular engines over the years, so you should find an air delivery system that fits the look and feel of your conversion project.
 


This Tech Tip is From the Full Book, HOW TO SWAP FORD MODULAR ENGINES INTO MUSTANGS, TORINOS AND MORE. For a comprehensive guide on this entire subject you can visit this link:
LEARN MORE ABOUT THIS BOOK HERE

SHARE THIS ARTICLE: Please feel free to share this article on Facebook, in Forums, or with any Clubs you participate in. You can copy and paste this link to share: https://www.diyford.com/ford-modular-swap-guide-intakes-induction/


As mentioned in Chapter 2, “modular” doesn’t mean that lots of things crossover among engines, and intake manifolds are no exception. Just like the small-block Ford 351W and 302 manifolds, the 4.6 and 5.4 won’t interchange because of the difference in block deck height. The shape and size of the ports have changed over the years, even if they look the same. And, of course, the manifolds are designed to flow enough air to feed one or two intake valves per cylinder.

All Ford factory intake manifolds are made of composite plastic, aluminum, or a combination of both. Most of the early performance engines and 4V setups came with aluminum manifolds. The early 4.6 manifolds developed a problem with the coolant crossover, requiring a fix from Ford in the early 2000s (see Chapter 2). Starting with the 3V engines, Ford went back with an all-composite intake and continued with that material up through the 5.0 Coyote; factory supercharged engines required an aluminum manifold to handle the extra pressures.

Intakes need not be industrial, plastic, and boring. This 2012 Cobra Jet Dragster features a supercharged Ford Performance 5.4 Cobra Jet Engine and a fully custom intake fabricated by Mr2 Performance in Lebanon, Indiana. Handcrafted from aluminum, it is adorned with a custom raised-cobra-scale pattern. And it works well, too; just like all cold-air intakes it eliminates curves and bends and draws air away from the heat flow of the engine.

The early 4.6 SOHC cylinder heads (pre-1999) were fine for street cars but started to run out of steam around 5,000 rpm. In 1999, Ford introduced the PI (Performance Improved) heads that work much better, and the intake port and intake manifold changed. Both intake ports have the injector mounted in the upper “corner,” but the port shape on the PI head was changed considerably. A head change requires a matching change to the intake manifold. Most aftermarket intake manifolds are designed for the later PI intake port. This design became the standard in the 2V engine through its production run.

The first 4V heads used a dual-port intake manifold that consisted of a square port primary intake runner and a round secondary port for use above 3,000 rpm. These heads work adequately, but have some issues with low rpm torque. In 1999, Ford redesigned the intake port into a Tumble Port design, which means that the air “tumbles” into the cylinder rather than swirls in. These oval ports have the injectors mounted in the middle of the port, and though they look the same, the size of the port varied through the engine’s revisions. A reminder about swapping heads and intakes: with a few exceptions (as when using adapter plates mentioned later in this chapter), when changing heads the intake manifold needs to be changed to match.

With the 4V heads still needing an increase in performance in the uses a manifold similar to the one sold by Ford Performance, and the entry to the manifold is on the back.

A shot of the underside of an early 4.6 SOHC intake. Note the teardropshaped intake and the injector in the corner. Also note the placement of the intake runner below the ports taking up the room under the manifold.

Here is the PI intake that most aftermarket companies duplicate. The port shape was changed to improve high-RPM performance.

The IMRC plate inside the intake manifold is shown. At low RPM, this plate closes off the port and increases the velocity of the incoming air charge, which improves low-end torque. As the engine increases in RPM the plate opens and allows full airflow. Many high-performance engine builders delete this system for high-horsepower engines because it’s a restriction at high RPM. Special thanks to Brenspeed.

The underside of the 3V intake shows the wider “tumble port” design and injector mounted centrally to feed both valves. The aluminum plate holds the IMRC system to help with low-end torque. It is also interesting to note that the runners are higher placed in this manifold than in the SOHC variety, and it also sports a dual-port throttle body. Special thanks to Brenspeed.

The 5.0 Coyote intake features larger ports and the runners running lower in the center of the intake. The IMRC has been removed from this intake, and the port size changed from the earlier 3V intake manifold. Note also that Ford went back to a single-blade throttle body design for the Coyote. Special thanks to Brenspeed.

Engines that are supercharged or turbocharged have a constant pressure in the manifold that forces air into the cylinders, so the port runner design has less effect on air delivery. All the factory supercharger manifolds are aluminum.

Intake Manifold

A wide range of intake manifolds is available for the modular engine family, and you can find one to accommodate everything from carburetors to stack injection to compact supercharger applications. Ford Performance still carries a line of intakes for most of the modular engine applications. Through the years Ford Performance has also supplied many of the factory performance intakes through the parts catalog, so used manifolds are in good supply at the swap meets and online. Here are some of the manifolds currently available:

Ford still makes available the PI version of its manifold for 4.6 SOHC (PN M-9424-P46). It has the upgrades to eliminate the early intake issues and with a matching set of PI heads works very well on the earlier 4.6 engines. (Photo Courtesy Ford Performance Parts)

Original Style

The term “original-style manifold” refers to a multi-port injection intake manifold similar to, or a duplicate of, the original style of intake manifolds found on the modular engines. These may or may not allow the use of factory components such as injectors and throttle bodies.

Ford Performance Parts 3V manifold (PN M-9424-463V) is a composite design that works well with forced induction. It has a port for mounting a MAP sensor (used with some forced induction and speed density computers). It works with stock or Ford Performance and aftermarket throttle bodies. (Photo Courtesy Ford Performance Parts)

The Boss 302 manifold (Ford Performance PN M-9424-M50BR) used on the Boss 302 production and race cars features composite construction and short port runner length for high-RPM power. It is designed for manual transmissions as it does not have an output for an aspirator tube. (Photo Courtesy Ford Performance Parts)

The Cobra Jet intake manifold was designed along with Ford Performance’s Cobra Jet racing engine program and is available for Coyote applications (PN M-9424-M50CJ). A composite manifold, it still works well with forced induction. Stock Coyote fuel rails fit this manifold, and the short runners make it good to 7,725 rpm. It is made for manual transmissions only as it does not have a provision for an aspirator tube. (Photo Courtesy Ford Performance Parts)

Trick Flow’s Track Heat manifold (PN TFS-51800002) is an all-aluminum manifold that’s designed for power ranges of 2,500 to 7,000 rpm for the Streetburner series or 3,500 to 8,000 rpm for the Track Heat configuration. The elbow can be adapted for a 75-mm round or oval dual-bore 57-mm throttle body. (Photo Courtesy Trick Flow Specialties)

Edelbrock’s Victor II manifold (PN 7180) is made for Coyote applications and has all the emissions ports and works with stock components. It has a crossover port design that gives it a lower height, which may help in some tight installations. (Photo Courtesy Edelbrock Corp.)

JPC Racing has an aluminum 4.6 3V manifold that has multiple front mounting plates for a variety of throttle bodies. This low-profile manifold eliminates the CMRC system and fits under low-profile hoods. It is also plumbed for most Ford factory equipment including EVAP and a vacuum port for power brakes. (Photo Courtesy JPC Racing)

Trick Flow makes three intake manifold versions for the 4.6 2V engines. Similar to the manifold used on the 2001 Bullitt engines, the elbow comes off the rear of the manifold rather than the center. JPC Racing has an aluminum 4.6 3V manifold that incorporates a billet aluminum front throttle body mount that can be changed for different TB applications. Edelbrock’s Victor II manifold for the 5.0 is an aluminum construction, which allows it to be used with forced induction and nitrous.
 

 
 

Carburetors and Central Fuel Injection

It is possible to run a carburetor on a modular engine; there are both low-profile and tall-ram manifolds. These manifolds can also be adapted to run central fuel injection metering and even multi-port fuel injection.

Edelbrock has a Victor Jr. single-plane manifold that fits the 4.6 PI heads and allows for carburetion, central fuel injection, or port injection. PN 2838 is not machined for individual injectors and 28385 is machined for fuel rails. Aluminum construction makes it ideal for forced induction and nitrous. (Photo Courtesy Edelbrock Corp.)

Sullivan Performance has developed a high-rise single-plane manifold to fit the 4.6 and 5.4 DOHC engines. These manifolds are optimized for use between 2,500 and 7,500, and come with a standard Holley bolt pattern. They also come with plenty of material for mounting vacuum parts and nitrous ports, and come with or without fuel injector ports already machined. Bosses for fuel rails are cast in and they also work with aftermarket central fuel injection systems. (Photo Courtesy Sullivan Performance) 
 

Dr. DOHC has done extensive work with the early 4.6 dual port and 2V engines, and it custom builds carburetor intake manifolds to work as a dual-port and a single-port system. These manifolds can be configured in low or high profile, single or dual carburetor, and all kinds of custom touches. This early 4.6 4V coil pack engine is decked out like an old gasser engine with custom finned pieces, low-profile Holley carb and intake manifold, and a custom set of coil-on plugs arranged to look like a distributor. (Photo Courtesy Dr. DOHC)

It is possible to run Weber downdraft carburetors on the modular engines, and Dr. DOHC can custom fit a set for 2V and 4V. This engine is fitted with chrome stacks; all the standard Weber configurations (air filters, ram tubes) are available. Check out the custom valvecovers on the 4.6 4V. (Photo Courtesy Dr. DOHC)

Stack Injection

Probably the biggest advantage to the individual injection stacks is the fact that each port has its own throttle plate, and this can reduce the airflow losses associated with the bigger single or dual bore throttle bodies. Plus they just look fantastic. The downside to some of the systems is fitting the throttle-linkage-specific engine compartment configurations.

Sheet Metal and Custom

For the full-bore racing set, numerous manufacturers have developed a sheet-metal intake that can be designed for everything from old-fashioned GMC Roots blowers to modern fuel injection to tunnel rams with carburetors.

The Borla Induction stack injection system for the 5.0 Coyote (PN 200125 and 200126) comes in either straight or semi-cross ram configuration. The semi-cross ram allows for extra hood clearance, and the big 55-mm throttle plates allow for huge airflow capabilities. The air horns, throttle bodies, and even the linkage is all CNC-machined from billet aluminum and has mounting points for high-capacity injectors and fuel rails. The aluminum intake is fully flow-matched to the Coyote intake ports. (Photo Courtesy Borla Induction)

Kinsler now offers its race-proven fuel injection setups for 4.6 and 5.4 4V engines and the 4.6 3V. It is a three-piece design so the center can be changed for different deck heights and widths. It can be fitted for EFI electronic injectors or old school mechanical constant-flow fuel injectors. The fuel rails can be mounted inboard or out, and the manifolds can also be custom-machined to fit other modular engine port specifications. They can be made of magnesium on special order. (Photo Courtesy Kinsler Fuel Injection)

EFI Hardware in Australia has developed its own stack injection system for the 4.6 and 5.4 DOHC engines and is developing one for the 5.0. It comes fully or partially assembled with either street or full race throttle bodies, ram tubes in blue or black, and fuel rails. It is also machined for a special MAP sensor collector for speed density applications. The plenum chamber underneath is designed for vacuum creation to run a brake booster and is connected to all eight throats to allow for electronic idle speed. (Photo Courtesy EFI Hardware)

Holley’s Sniper sheet-metal intake can be configured for fuel-injection throttle bodies, central EFI, or carburetors in either single- or dual-quad configurations. Currently available for the 4.6 3V and the 5.0, it can be fitted with a twin 65-mm throttle body or a Holley 4150 base. It is available in either black or silver anodized. (Photo Courtesy Holley)

On its way to creating the world’s fasted modular-engine dragster, Modular Motorsports Racing has developed a line of sheet-metal manifolds for many of the modular platforms. This Coyote manifold is full race with custom injector rails, front throttle body mount, and removable top for additional tuning. (Photo Courtesy Modular Motorsports Racing)

Hogan’s Racing Manifolds can fabricate just about anything you can think up, including carburetion, EFI, Webers, stack injection, supercharged; just tell them what you need. Any of the modular head and block combinations are possible. This manifold is designed for a 4.6 4V EFI with a 90-mm throttle body. (Photo Courtesy Hogan’s Racing Manifolds)

BBK makes a one-piece high-flow elbow and throttle body for the 1996–2004 4.6 2V. The throttle body is available in 73- or 78-mm versions and comes in black or polished finish. Ford factory IAC and TPS work with this elbow, with 10- to 15-hp gains with this bolt-on alone. (Photo Courtesy BBK Performance)

High-flow upper plenums are available for 2V applications that use stock components such as this Trick Flow upper Plenum (PN TFS-51800001). It flows 100 cfm more than stock and is compatible with throttle bodies up to 75 mm. (Photo Courtesy Trick Flow Specialties)

Sullivan Performance sells an adapter that not only fits its manifolds, but it fits a Holley 4150 base pattern to convert to a Cobra dual-throttle body or a single Accufab throttle body. It is also machined for use with a factory Ford IAC and EGR. (Photo Courtesy Sullivan Performance)

Intake Elbows

Most 2V manifolds used an intake elbow to direct the airflow to the manifold from one side of the engine compartment. The aftermarket designs have improved on the factory pieces and allow more combinations with the SOHC engines. Factory elbow design allows for cost and manufacturing concerns, noise reduction, and space restrictions, whereas aftermarket designs can concentrate on performance.

Modular Motorsports Racing has several IMRC delete plates available to eliminate the restriction caused by the plate system in the vehicle. This version (PN 900876) is made of billet aluminum and is designed to replace the 1996–1998 dual-port IMRC plates. They can be ported for maximum flow and are a direct replacement for the factory components. (Photo Courtesy Modular Motorsports Racing)

Intake Adapters

As with the pushrod small-block, more intake manifolds are available for the lower deck height engines than the taller engines. Modular Motorsports Racing and Professional Products make adapter plates to retrofit a 5.4 engine with 4.6 intakes. They are application specific and have to keep within the “family” of cylinder heads (e.g., 5.4 DOHC to 4.6 DOHC of the same year).

IMRC Eliminator Plates

While the IMRC (Manifold Runner Control) is good on a stock engine for helping with low-RPM torque, it creates a restriction for high-revving engines. Steeda and Modular Motorsports Racing make eliminator plates that remove these restrictions on high-horsepower engines and maintain factory intake manifold height and geometry.

Intake Tubing and Components

Factory Ford intake systems use a throttle body, an IAT sensor (intake air temperature), an MAF (mass airflow meter), a length of tubing to draw the air from a remote location, and an air filter/filter box. Speed density systems use a similar setup without the MAF; instead, they use a manifold absolute pressure sensor or MAP. Some supercharged or turbocharged setups may use both. The engine build determines the choice of components.

Throttle Body

The throttle body meters the amount of airflow into the engine by using a blade or blades to meter airflow. The throttle body needs to match the airflow requirements of the engine. If the throttle body is too small, the engine can’t get enough air and loses performance. If the throttle body is too big, the speed of the air coming into the engine is too slow and the engine loses horsepower and throttle response.

Cable versus Drive-by-Wire

Prior to 2005 Ford used a mechanical throttle cable to open the throttle body. In 2005 Ford began using drive-by-wire on modular engines. This consisted of a sensor mounted on the accelerator pedal and an electric motor mounted on the throttle body. If you’re buying an engine and harness from a donor car, you need to get the pedal and the under dash harness, so you have the equipment to properly run the engine. Aftermarket pedals are available, but some pedals don’t work well in some vehicles, such as the Crown Victoria pedal. Ford has kept the connector fairly consistent, so swapping a pedal from different vehicles is not a big problem. (See Chapter 6 for more information.) Some aftermarket PCM systems do not work with drive-by-wire and require a conversion back to a cable-style throttle body.

Single- versus Dual-Bore

Ford has used both single and dual-bore throttle bodies on its factory engines. Why a particular style was chosen goes along with the overall engineering of the engine. A 4.6 3V has a dual-bore throttle body and a 5.0 Coyote has a single bore. Most of the supercharged engines have an oval dual-bore setup.
 

 
While a large single-blade throttle body allows greater amounts of airflow, the engine can be sluggish at low RPM. One way to improve engine response is to have the same air volume run through two bores to increase the air velocity. However, the dual-bore throttle bodies have a “splitter” in the middle, which restricts airflow at higher RPM. At high RPM, the single-blade throttle body may move more air without the restriction between the bores.

A comparison of two Terminator throttle bodies, the stock 57-mm dual on the left and an Accufab single blade on the right. The dual bore allows for more air velocity at low RPM, but is restrictive at high RPM due to the splitter between the bores. The single blade flows a considerable amount more as it opens, flowing 1696 cfm compared to the stock 1,089 cfm at WOT.

Ford Performance sells throttle bodies for both drive-by-wire and cable operations. This is the drive-by-wire 90-mm throttle body for the Coyote (PN M-9926-M5090). Ford has adapters available to mount the throttle body to stock Coyote and Boss intakes, and reducers can be used to adapt it to stock 3.5-inch intake tubing. (Photo Courtesy Ford Performance Parts)

FAST makes a throttle body for the Coyote engine when converting to a drive-by-cable configuration or when working with some aftermarket computer systems that do not support drive-by-wire. The 87-mm bore is larger than the stock 80-mm, and works well with both the stock intake or the Boss 302 intake. It is fitted with GM-style IAC and TPS sensors. (Photo Courtesy Fuel Air Spark Technology)

BBK also has a full line of cable and drive-by-wire throttle bodies. Its Coyote TB comes in at 90 mm and comes with an adapter to mount to the factory intake manifolds. They accept all factory parts and work with the factory tune (depending on other modifications). (Photo Courtesy BBK)

Intake Air Temperature Sensor

The Intake Air Temperature (IAT) sensor works similar to the coolant temperature sensor: as the air heats up, it changes the resistance in the IAT and the computer can change the amount of fuel delivered to the engine. Later mass air systems integrated the IAT into the mass airflow meter. Both mass air and speed density systems use an IAT.

The location of the IAT is usually close to the inlet of the air intake system. Supercharged or turbocharged engines use a secondary IAT sensor mounted in the intake manifold to measure the temperature of the air after it has been compressed. When a supercharger or turbocharger compresses air, the air temperature is increased.

An IAT sensor must have the correct resistance range for the PCM being used and should be mounted away from heat sources, such as the engine or radiator.

Mass Airflow Meter

Engines equipped with a mass airflow system use a small wire in the MAF, which is electrically heated, and as air flows past the wire the air cools the wire and changes the resistance of the wire. The resulting change of resistance is sent to the PCM to determine the amount of air that is flowing into the engine. This information, along with the IAT, tells the engine the volume and density of the air entering the engine.

Remembering the analogy that the size of the “straw” used determines the volume and speed of the air passing through the MAF, it is important to match the size of the mass air meter to the required volume of air entering the engine. This is one of the advantages of the speed density system; no MAF to change out when changes to the engine are made. Matching the MAF, the throttle body, and the tubing are all important when designing the intake system.

Ford Performance still offers the Lightning mass air meter (PN M-12579-L54). It is a 90-mm air meter for big intake-tube designs and has provision to mount the stock air filter box. (Photo Courtesy Ford Performance Parts)

BBK sells an 86-mm mass air meter for 1996–2002 SOHC applications. It comes fully calibrated for stock or cold air kits, is made of CNC aluminum, and can mount factory air boxes. Cobra calibrations are also available. (Photo Courtesy BBK)

When fabricating custom intake tubing, VMP Performance offers a weld-in MAF mount. This mount is made of stainless steel and mounts a 2005-up MAF. It is good for tubing between 31⁄2 and 5 inches in diameter. (Photo Courtesy VMP Performance)

There are two basic types of MAF meters: blow-through and draw-through. Normally aspirated engines use a draw-through meter and some supercharged and turbo applications use a blow-through MAF. These are exactly as named: a naturally aspirated (non-super or -turbocharged) engine uses a draw-through system. Forced air systems can be equipped with either, but the routing of the blow off valve and tubing is different for each application.

Manifold Absolute Pressure Sensor

Most speed density systems and some mass air systems use a Manifold Absolute Pressure (MAP) sensor. The computer needs to have three pieces of information to command the proper amount of fuel: the pressure of the air inside the intake manifold, the density of the air, and the load that the engine is working under. The MAP sensor measures the pressure in the manifold relative to a perfect vacuum; that is, no pressure from the outside air. Barometric pressure (the air pressure around you right now) is greater at sea level than up in the mountains, and barometric pressure can change with the weather. The MAP measures pressure from absolute vacuum (no pressure; outer space) up to 1 bar (around 14.7 psi, 29.9 inches of mercury or 101 kPa). Aftermarket MAP sensors can measure up to 5 bars, or approximately four times atmospheric pressure.

The speed density system uses the speed of the engine (RPM) and the density of the air going into the engine to determine how much fuel to supply at any given time. The speed density system uses a series of internal fuel curve maps to calculate this fuel/air ratio.

Intake Tubing and Filters

Matching the intake tubing to the rest of the components in the intake system is also critical when designing the system and tuning the computer. As noted in Chapter 4, the Ford Control Packs come with a preselected intake system and the PCM is programmed for this specific tubing set.

Cold-Air Kits

One of the cheaper horsepower add-ons is a cold air kit. Well-designed cold air tubing systems do two things: they draw air from an area away from the engine and radiator flow to equalize the intake air temperature to the outside air, and by reducing unneeded bends and silencers, they can reduce restrictions, increasing airflow to the engine to make more power. They also typically use a low restriction air filter to further increase airflow.

Along with the Cobra Jet throttle body, Ford Performance has a cold air intake to match with a 102-mm inlet. Compact and adaptable to other applications, it comes with a low-restriction filter and plastic filter bucket. (Photo Courtesy Ford Performance Parts)

Western Motorsports developed a cold air kit for the 2005–2009 engines that takes air in a straight shot over the radiator, eliminating all the bends and turns in most kits. The kit comes with a new mass air meter and low-profile air filter, and might be adaptable to other chassis. (Photo Courtesy Western Motorsports)

K&N makes a full line of cold air kits, and I found that the 1999–2004 Cobra cold air kit (PN 57-2523-2) works perfect with 4.6 4V installations such as the Mustang in Black. Once the battery is relocated to the trunk, it requires only a bracket to mount the filter shield to the bottom of the battery tray area.

JLT Performance specializes in cold air intakes and it has systems for both stock and custom installs, naturally aspirated and supercharged packages, and a host of options. Its intakes are available in standard black, color matched, or a carbon fiber look. Tuning is available with all its kits. (Photo Courtesy JLT Performance)

JLT Performance, Ford Performance, Western Motorsports, K&N, and others offer cold air intake for the modular engine. Because there is a wide range of modular engines, there is also a wide range of cold air intakes to fit them, and each engine type has its unique flow requirements. While most cold air kits are designed for a specific late-model application, some might work in a different engine compartment. Some aftermarket tubes do not have a provision for an aspirator tube, which allows for power brake operations in automatic-equipped vehicles.

Swap Spotlight: Double Trouble

Before he gave the world the Equadroline, master fabricator Gordon Tronson built Double Trouble, a built-from-scratch 1927 T that proved that a modular engine masterpiece can blend new technology with old school chassis, and do so seamlessly.

Double Trouble was built with no plans, from scratch. The plan was to build something that nobody else had. Gordon had seen dragsters and custom cars with engines inline, but Gordon wanted to build a car with engines side by side. Some serious engineering would need to be worked out to make everything work.

You would think that a side-by-side engine build would have you searching for a pair of narrow engines, but Gordon established the bar by starting with a pair of wide-bodied, all-aluminum 4.6 DOHC engines and a fiberglass 1927 T body, then he went to work. Almost everything on the car is hand fabricated by Gordon. The chassis was built out of 1.5-inch tubing custom bent by Gordon to accommodate the modular engines. The entire frame was then powder-coated for durability because his creations are driven. Gordon then custom-fabricated the front suspension using an unequal-length double A-arm design using coil-over shocks. The rear axle is a Jaguar independent unit with inboard brakes. Rear brakes are matched with a pair of Corvette spindles and brakes on the front. The rack-and-pinion steering unit is similar to ones used on sandrails. The brake booster is mounted under the floor.

This is Gordon Tronson and one of his creations, Double Trouble. This 1927 T-bucket roadster has 1,200 hp emanating from two all-aluminum 4.6L DOHC engines. (Photo Courtesy Gordon Tronson)

After acquiring the body and engines, Gordon hand fabricated the frame to accept the side-by-side configuration of the engines. Temporary spacers hold the engines in place while fabricating. (Photo Courtesy Gordon Tronson)

A custom fuel tank was fabricated and works in conjunction with a Procomp high-flow electric fuel pump. Griffin Thermal Products made the custom radiator for cooling the dual engines. The headers and side exhaust were made from a street rod kit then custom bent to fit the engines.

Even though the engines are new with overhead-cam technology, Gordon went old school for the look on this ride. Its engines are not only carbureted with Holley 4150s, but they run through several (yeah, I said several) Weiand Roots superchargers. The original combination used two superchargers and was good for around 1,000 hp. But with Gordon, more is better, so he fabricated new intake manifolds to allow twin superchargers and carburetors per engine. Now Double Trouble puts out around 1,200 streetable horsepower.

Other improvements to the engines include a conversion back to distributors run off the back end of the camshafts. The Procomp CDI systems are reminiscent of the flathead designs of the late-1930s Fords. Twin starters work in tandem to start both engines at once.

The transmission is a mid-1980s Ford C5 3-speed, which is mated to a custom transfer case to drive both engines. The custom fabricated bellhousing was used to match the transmission to the transfer case. (Photo Courtesy Gordon Tronson)

A single-drive belt spins all four Weiand superchargers. The intake manifolds were hand-fabricated, and four Holley 4150 double pumpers feed them. The special wide radiator was custom built by Griffin Thermal Products and serves both engines with two inputs and outputs. (Photo Courtesy Gordon Tronson)



This post first appeared on Everything You Need To Know About Ford Mustang Shelby Gt500, please read the originial post: here

Share the post

FORD MODULAR SWAP GUIDE: Intakes & Induction

×

Subscribe to Everything You Need To Know About Ford Mustang Shelby Gt500

Get updates delivered right to your inbox!

Thank you for your subscription

×